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Abstract

The Poisson-Boltzmann equation is an important tool in rfindesolvent in biomolecular systems. In this
paper, we focus on numerical approximations to the eletttiospotential expressed in the regularized linear
Poisson-Boltzmann equation. We expose the flux directiyubh a first-order system form of the equation. Using
this formulation, we propose a system that yields a traetldast-squares finite element formulation and establish
theory to support this approach. The least-squares firete@ht approximation naturally provides aposteriori
error estimator and we present numerical evidence in stjgbtine method. The computational results highlight
optimality in the case of adaptive mesh refinement for a ¢ molecular configurations. In particular, we
show promising performance for the Born ion, Fasciculin &tmanol, and a dipole, which highlights robustness
of our approach.
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1. Introduction

Solvent plays a critical role in determining the structunel &unction of biomolecular systems. However, the
explicit representation of solvent at a molecular levefftemintractable due to the range of scales required. More-
over, properly modeling solvent interactions with molexuis computationally expensive due to the complexity
of the atomistic interactions that must be sampled overiplaltonfigurations. As such, implicit solvent models,
such as the Poisson-Boltzmann model [1] and Generalized Bodel [2], confront this diiculty by treating the
solvent as a bulk continuum.

The focus of this work is on numerical solutions to the PaisBoeltzmann equation (PBE), which approxi-
mates the mean solvent forces by assuming the ions arebdistri according to the Boltzmann distribution. This
results in a unique electrostatic potential described Iy ithplicit solvent model [3]. In particular, we seek a
numerical solution of the linearization of the regulariZ28E (RPBE). The use of a regularized formulation [3],
is required because the original statement of the PBE y®luyularities in the electrostatic potential. Regular-
ization overcomes this issue by analytically subtractimggingularities from the electrostatic potential yietglan
modified version of the original PDE. To further simplify theoblem, and focus on thdfeacy of our discretiza-
tion, we linearize the RPBE. The linearized version has nafriyie same challenges as the RPBE, however it
features reduced computation cost [4] while remaining as@}ly accurate perturbation to the fully nonlinear
problem [5].

A number of diferent directions for numerically solving the Poisson-Bailann equation have been pursued.
Approaches such as finiteffirence and finite volume methods [6—15], finite elements oust[8, 16—22], bound-
ary element methods [23—34], and integral equations [3ph&%e been developed for this problem. Yet, as the
complexity of applications increases so do the demandsenumerical approximation, and we are motivated to
investigate additional computational tools that proviadeedium for more robust andficient simulation.
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In this paper, we focus on a variational setting for the PBE thuthe underlying theoretical support for
numerical methods and the established analysis of the iequdh particular, we propose a least-squares finite
element formulation of the linear regularized PoissontBuhnn equation. Least-squares finite element methods
offer a viable approach tofficient and accurate approximation. The least-squares mhetledfollow begins by
reforming the partial dferential equation as a first-order system. A functional sntlconstructed based on
the residual equations of the first-order system, and ismizad. A first-order system least-squares (FOSLS)
approach to finite elements has shown to fiedive for numerous problems. In particular, elliptic pieris [37,

38] with discontinuous cdgcients [39—41] are theoretically competitive and numéljqalausible.

The existing FOSLS theory motivates our treatment of the B@Ethe theoretical properties for the FOSLS
form we pose in Section 3 are not fully developed. We estaliligse results and confirm the existence of a
unique solution for our problem. We propose a first-ordeteysfor the PBE in Section 3 that correctly addresses
the jump discontinuity inherent in the problem. The PBE isailived through a dielectric ctiient, e(x), and
Debye-Hiickel parametes(x), that are discontinuous across an interface. Propentesatof the flux term across
this interface is critical to the variational formulatiofo this end, we propose a unique form of the flux that both
captures the underlying physics and yields a system amet@hblleast-squares minimization.

The goal of this paper is to outline a least-squares finitsmetd method for use with existing computational
tools, such as the Finite Element Toolkit (FETk) [42], whigbes piecewise linear elements over tetrahedral
tessellations of single domains. The result is a competiind straightforward finite element method for the
PBE using adaptive mesh refinement. Adaptive refinemengdisiite elements has been studied for the Poisson-
Boltzmann equation in a Galerkin formulation [18, 19]. Te@pproaches focus on resolution of the singularities
in the original PDE. Here, we use the functional provided ly least-squares formulation to guide refinement
with similar success. Treatment of the interface condiiscautomatic in our formulation of the problem, naturally
capturing the physics around the interface while still peimenable to approximation by standard finite elements.

The remainder of the paper is organized as follows. In Se@jave summarize the PBE, its regularization and
linearization, and the general problem domain. We outlmeROSLS terminology in Section 3 and introduce our
formulation of the method. Moreover, we establish theaedly the use our formulation and discuss implications
and techniques for computational simulation. In Sectiowd,provide numerical evidence offectiveness of
the FOSLS approach for a number of molecular systems. Thieadés shown to beftective for problems with
known solutions (Born ion), for more complicated structufBasciculin 1 and methanol), and for a problem with
low regularity (dipoles).

2. Poisson Boltzmann Equation

The Poisson-Boltzmann equation models the electrostetiiityt between molecules in an ionic solvent. In
this model, it is assumed that the ions in the solvent areiloised according to the Boltzmann distribution and
that the potential of the mean force on a patrticle is simpéydharge of the ion times the electrostatic potential.
This yields the general Poisson-Boltzmann equation [5],

=V - (e(X) V(X)) = dmpi(X) + 4n 2 c;Qj2(X) exp[k;—%_Qj%(x)] , (1a)
=1
nx||i\m #(x) = 0. (1b)

Here, ¢ is the unknown electrostatic potentialis the dielectric cofficient,ps is the fixed charge distribution in
the solute (biomoleculekg is the Boltzmann constant, afidis the temperature. It is assumed that the solvent is
composed ofg species of ions, each with char@? and concentration?. The accessibility of théth ion-species
to a point,x, in space is described by(x).

For a solute in a 1:1 electrolyte solvent (e.g. NaCl), thegbaf each ion species sl unit charge, and the
general Poisson-Boltzmann equation simplifies [1] to

—V - (e(X) V(X)) + K2(X) (%) sinh( =4n Zm: Qid(X — X), (2a)
i-1

lim ¢(x) = 0. (2b)

[IXl|—00

)

Here, we have further assumed that solute contains a tatafinéd point charges, with thi¢h charge@;, centered
at positionx;. The resulting distributiorys, is a linear combination of Dirac delta functiod$x — x;).
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The domain for the problen®3, is subdivided into a molecular regiof,, a solvent regionQ2, and an
interface between the two, denotedIhyThe solute is surrounded by solvent, which is represergedcantinuum
over the subdomaify = R3\Qn. In some Poisson-Boltzmann models, an additional ion simfuor Stern layer
is present betweef2s andQn,. The Stern layer provides separation between the solutéha@idns of the solvent.
As a result, the dielectric matches the dielectric in thevesal region and the ionic strength is zeko#£ 0). In
this paper we focus on the more challenging issue of the jumnipé dielectric, and neglect the Stern layer. The
subdomains for a typical biomolecular solute are shown gufé 1. The dielectric cdgcient,e(x), and modified

Solvent +
Qg - +

+
+
Ions ——» + _
T
I / ; Solute
nterface (Explicit Charges)
r Qn

Figure 1: Subdomains for the Poisson-Boltzmann equation

Debye-Huckel parameter(x), describe the accessibility of the solvent to the soluttane defined oy, U QF
by the piecewise constant functions

e(x) = {im

Here, en and es are positive constantdy is Avogadro’s number, and; is the charge of a proton. The ionic
strength s, is a physical parameter which varies depending on the sblve

For computational reasons, the unbounded solvent dorf¥inijs typically truncated at a finite radius from
the “center” of the molecule, which gives rise to a boundduesd domain,Qs. Dirichlet boundary conditions
are imposed to capture the asymptotic behavior of the swluth an unbounded domain. Combining this with the
change of variablesy(X) = e.¢(X)/ksT, results in a dimensionless Poisson-Boltzmann equatich@spherical
domainQ = Q,UQ UT:

0 X € Qn
and K%(x) = . ) (3)
= aqpperls xe Qg

X € Qm
X € Qg

m
—V - (e(X) V(X)) + k() sinhti(x) = tr_$ Z Qio(X—X), Xe€QnUQs, (4a)
i=1
() = 9(x), X € 0Qs, (4b)
H (X )au(x)]] =0, xeT. (4¢)
r
where the jump at the interface is defined as
ol(x) : AU(X + an) Al(x — an)
|0 = fim, et @y =20 - et am =20,
with n as the unit normal to the interfate
The boundary conditions are prescribed using a linear coatioin of Helmholtz Green'’s functions,
@w—m»
. 5
9= kBTZes|x m ( Ve ©)
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In contrast to (2a), the principal equation is defined oveheaubdomain and an interface condition is introduced
onTI. This restatement makes explicit the normal continuityliethby the strong form divergence e{x)V¢
across the interfacé in the original PBE.

We denote the standard Sobolev spacek?@) andHX(Q), for k > 0. HX(Q) consists of functions ove®
having square integrable (weak) derivatives of order up.t@ke norms orL?(Q) and HX(Q) are expressed as
Il llo.o @nd]| - [lk.a, With theL?(Q) inner product written-(-)oo. In addition, we define the Hilbert spaces

H(div; Q) := {q € L2(Q)®: V- q € L3(Q)},
Ho(div; Q) := {g € H(div; Q) : n-q = 0 on9dQ},
H3(Q) = {ue HY(Q) : u= 0 0ndHQY},

with norms

a0 =l + 1V - aliZg, (6)
U2 o =lul2 o, + IVUIB . (7)

One dfficulty with (2a) is regularity. The right-hand side ¥; Qi6(x—x) is not inH=%(Q), i.e., the dual space
of Hg(Q). Practically, the right-hand side induces singularitied at the solute atom centexs These singular-
ities are the familiar consequence of solute-solute edetdtic interactions satisfying Coulomb’s law. However,
finite element and finite fierence methods often require more smoothness in order t@giea convergence.
Following [3], we overcome this issue by decompodirigtd

0=u+uUg, 8)

whereu is an unknown smooth function angis a known singular function. The Coulomb functiag, satisfies
the Poisson equation

4 m
—emV - VUe(X) = k’;—? D Qa(x—x), )
i=1

and absorbs the singularitiesun Combining (8) with (4), we obtain the regularized PBE or FPB

—V - e(X)Vu(X) + k2(X) sinh @(X) + Ug(x)) = V - (e(X) — em)VUe(X), X € QsU Qm,

u(x) = g(x) — uc(x), X € 0Q, (10)
oux) 1 0Uc(X)
[[E(X)W]]r = (en- )=, xel.

Sincex(x) ande(x)—em are zero insid€,, we avoid evaluating the Coulomb potentigl, near the singularities
present at each point charge,e Qn,. This yields a right-hand side in (10) that is a well-definéstribution in
H-1(Q) and, as a result, equation (10) is a well-defined nonlineaoisd-order elliptic equation with a unique
weak solutioru in H(Q) [3].

A simplified version of (10) is the linear regularized Poiss®oltzmann equation, which is obtained by lin-
earizing the hyperbolic sine:

—V - (X)VU(X) + K2(U(X) = V - (€(X) — em)VU(X) — K2(X)U(X), X € QsU Qpn, (11a)
u(x) = g(x) — ug(x), X € 0Q, (11b)
He(x)a;—(:)”r = (em— es)a‘gr(lx), xeT. (11¢)

Physically, the linearization reduces the ionic resporisbesolvent to the solute. This approximation is accept-
able unless the solute is highly charged [4]. In this caserthgnitude of the electrostatic potential is large, and
the approximation sinlj ~ u is not accurate [1].

3. FOSL SFormulation of PBE

The First-Order System Least Squares (FOSLS) finite elemettiod is an alternative to standard and mixed
Galerkin finite element methods [43]. FOSLS begins by caimgthe PDE to a first order system. Using the new
set of equations, a functional is then defined whose mininsiakves the original PDE.
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FOSLS dfers a number of potential advantages over traditional ntsthdhe functional is minimized using
a variational principle, giving rise to a symmetric bilimdarm. A discretization based on this form leads to a
symmetric positive-definite linear system, which is ideal $olvers such as preconditioned conjugate gradient.
Also, the bilinear form is often elliptic with respect to aagtical norm, and as a result the finite element spaces do
not need to satisfy the discrete inf-sup condition of Ladymkaya-BabuSka-Brezzi [44], unlike mixed methods.
A practical consequence is that basic finite element spaagsgontinuous piecewise linear polynomials, may be
used for all variables.

The FOSLS functional also provides a loeaposteriorierror estimate. Such estimates are complicated for
other methods, but the FOSLS residual norm provides a $iifaigvard and accurate estimate for our problem.
This local error estimate is used for adaptively refining asmi@ our numerical experiments and we highlight the
effectiveness of this tool.

Least-Squares finite element methods are not without ltraitahowever. The introduction of new variables
to formulate the first-order system ultimately increasesdhgrees of freedom and complexity in computing the
solution. This is not necessarily a disadvantage as the aeables are often physically meaningful and are often
needed elsewhere in the simulation. For example, the FO8trBulation of the PBE introduces a secondary
“flux” variable, which is used to féectively compute potential of the mean force required ingbleition of the
Steady-State Smoluchowski Equation [45]. Another po&tigtiawback is that FOSLS requires more regularity
than might be present in the problem to ensure optimal estimates. Optimal error estimates using a Least-
Squares approach for PBE can be derived through a multi-oloagproach for such problems [46]. In this
paper, we also use adaptive refinement to overcome thesesis§ewomputational complexity, yielding optimal
convergence rates in our numerical experiments.

A typical approach to forming a first-order system of (11) iogesingle domain is to introduce a flux,

g = e(X)Vu (e.g., see [39]). The resulting first-order system is

G-€evu=0 inQ, (12a)
V- -§+xU=V-(eX) — &n)VUc — K2Uc inQ, (12b)
Uu=g-uUe onoQ. (12¢)

An application of Green’s theorem on this system shows theiss any surface i@ with normaln, n - § is
continuous. In particular, solution to system (12) satssfie

[[ﬁ . n]] =0 xel.
r
However, sincdj = €Vu, equation (11c) implies,

[[q : n]]r = (ém—€5)VUe(X) - N xeT.

This impliesg-n is not continuous across the interfdGeand hence, a least squares approach based on system (12)
is an incorrect formulation for solving the RPBE.

For a well-posed FOSLS formulation to system (11), we neeatkfme a first-order variablg, whose normal
componentis not only continuous across the interface, Ibatsatisfies the interface condition required by RPBE.
To ensure these conditions, we defipne e(X)Vu + (e(X) — em)VUuc, which results in,

a/e(x) — Vu = ((e(X) — €m)/e(X)) Ve inQ, (13a)
-V - q+K2U = —K2Uc inQ, (13b)
Uu=9g-uUe onoQ, (13c)
nxq=nx(eVg+ (e(X) — en)VUc) 0N oQ. (13d)

Now equations (11c) and (13) imply,

[[q~n]]r=0 xerl.

We now pose our problem in abstract form and establish a ersqlution. To simplify the analysis we consider
homogeneous Dirichlet boundary conditions. Using a stahliféing argument, we obtain

a/e(x) — Vu = ((e(X) - €m)/e(x))VUec  in Q,

-V-g+ KU = —Ezuc, in Q, (14)
u=0 onoQ,
nxqg=0 onoQ.


http://dx.doi.org/10.1002/jcc.21446

This is the pre-peer reviewed version of the following article: S.D. Bond, J.H. Chaudhry, E.C. Cyr and L.N. Olson, J. Comput. Chem. 31, 1625-1635 (2010),

which has been published in final form at

The least-squares functional based on (13) is as followsq EoH(div; Q) andu € Hé(Q), we define
G(, U; Uc) = lla/e(X) — Vu— (((x) — m)/e(x))VUellgq + Il = V- q + iU + PUcllf . (15)
The solution of (13) solves the minimization problem

G(d, u; ug) = min G(r, V; Uc) (16)
(r V)eHo(div;Q)xH3(©)

and leads to the variational problem

F(,u;r,v) =£(r,v), (17)

where the bilinear form and linear functionaf are
F(9.u;r,V) = (q/€ — VU, I /e = W)oa + (V- q + K2U, =V - T + k?V)o0, (18)
£r,v) = =(KPUe, =V - T + V)00 + (((€ — €m)/€)VUe, T /€ — VW)oq. (19)

3.1. Ellipticity of FOSLS functional

To show the variational problem (17) is well-posed, it isfisient to prove thaG(q, u; 0)z defines a norm
equivalent to thed (div) x H! norm (Theorem 1). This result also ensures that our finiteele solution is the best
approximation to the true solution under the norm definedkxy, u; 0). Before proving this norm equivalence,
we start by stating and proving a lemma, which will be usedegroof of Theorem 1.

Lemma l. Let h(X) and KX) be two positive bounded functions@ni.e.0 < ¢; < h(X) < ¢c; and0 < ¢; < k(X) <
c; for all x € Q, where g and ¢ are constants. Then there exists positive constangnda, such that

afﬁ(q, u;qg,u) < F(q,u;qg,u) < asz(q, u; g, u), (20)

where the bilinear forn¥ is defined as

7@, u;r,v) = (Vh(a/e — Vu), Vh(r /e = VW))oo + (VK(=V - g+ U), VK=V -1 + V))oo.  (21)
Proof of Lemma 1Takinga; = ¢, anda, = c;* gives the desired result. O

Theorem 1. The bilinear form7 defines a norm equivalent to thgdiv) x H! norm. That is, there exists positive
constants; andy, such that

F(d, u; 1, V) < ya(llallfy gy + 1UIE ) 20N 1R gy + IMIE o) (22)
and
F (9, U; G, U) = y2(lldlf gy + Ul o). (23)

Proof. A proof for the general case is given in [37]. Here wieo a proof for our specific case, to obtain sharper
constants of ellipticity; our proof is in the same spirit ggraof presented in [39].

First we prove boundedness®f(equation (22)). An application of Cauchy-Bunyakovskyy®arz inequality
to (18) leads to

F(a, u;r,v) < (F(a, s 9, u)2(F (r, v T, v)Y2 (24)
Using the fact that is bounded away from zero @ yields
F(0.u; g u) = lla/e = Vullg o + 1| = V- q + Kull}

<y3(lallig + VUi o + IV - all o + Ul 0)
= y3(llallfy @iv) + U1 o) (25)
whereys = max(2 2«*, 2¢72) = max(2 2«2, 2¢,2, 2¢;%). Combining equations (25) and (24) proves boundedness

S
of 7.
To prove coercivity, we consider a modified bilinear formdagined by (21). We definl(x) andk(x) as:

_Je(® X € Qm 1 X € Qn
h(9 = {Tf(X) X € Qg and k(x) = {T/,?g X € Qs, (26)
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wherer is a constant such that9r < 1.
We can decompose the integral ogeand evaluaté overQs andQn,

F(9. U; 0, u) = 7 (9. U; G, U)lo, + 7 (q, U; G, U)la,, (27)
where R
F(0.U; . Ulo, = [ V70/ Ve — VT VeVUl o + Il = Vr/ksV - q + Vrksullg o (28)
and A
F(0.u; 0, Ula, =10/ Ve - VeVulliq +IIV-dliq, - (29)

Integration by parts shows that

fV~qu+ q-Vu—fuq-nm:O, (30)
m Qm r

wherenp, is the unit normal atf’, pointing from the solute region into the solvent region. piing this result
to (29), we obtain

F(a,U; 9. W, = 19/ Vel3o + 11 VeVUl3o — 2 fg q-Vu+[V-dlg, +2r fg V-qu

+27 o q-Vu- 2Tfruq N+ Ul g, — AUl g,
=lla/ Ve + (r = 1) VeVulg o, +1IV-q+7ulfg —72ullf g
+(2r - )| VeVuls, — 27 fr ug - N (31)
Similarly, using integration by parts on equation (28) gl
(0. U; 9, Ula, = | V7a/ Vel3q, + 1 VT VeVullZg,
-2t f Q- YU+ [|VV - a/kdlg o, + 1 VrksUllg o, — 27 fﬂ V. qu

s

= VG /k)V - alls o, + I1V7a/ Veli3 o, + 1 VT VEVUlg o + | Veksull3 o — 27 f ug-ns, (32)
T

whereng = —ny, is the unit normal along, pointing from the solvent domain into the solute.
Using the Poincaré-Friedrichs inequality, we can assume

Iull3q < AVUR,,  with 4> 1. (33)
From equations (27), (31), (32), (33) and choosing % < 1 we have

F(a, u; 0, u) = [| V7a/ Vell3 g, + I VT VeVUlZ o + [ VTV - a/kell3 g, + | ViksUlla g,
+a/ Ve + (r = 1) VeVull o +IIV-a+tullg - Tl + (21— )l VeVUl g,
> | VT VeVUll§ o, + (27 = ) VeVUllg o, — Tlulliq,,

2 2 2 2 2
> 7| VeVulZ, — Pluldg > (r - 479 VeVul2,,

1
= 23 VeVl = asllVulG, (34)
whereas = 2= min(em, €s).

Now from equation (20), we get
F(. u; 0, u) > a4lVul (35)

whereay = a1a3. From the Poincaré-Friedrichs inequality (33), we find
F (0. U; G, u) > aslulld . (36)

Moreover,

1
la/ellfq < 2(la/e - Vullg o + IVUll5q) < 2(1+ a—4)¢(q, u; g, ),
7
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and henceF (g, u; g, u) > aslldl3, for as = a4 [2 (1 + 4) Max(es, en)] L. Similarly,
IV-all3q <201V - g - Kull3 o + Kull3 o) < 2(1+ Keas)F (9, u; g, u), (37)

and thusF (d. u; g, U) > a7V - gl , for a7 = [2(1+ as)|
Takingy, = min(aa, as, as, a7) completes the proof. O

The FOSLS functional (15) isl(div) x H! equivalent. In some FOSLS formulations, a curl term of thenfo
V x (g/€) = 0 is added to problem formulation (e.g., [39]), yieldingda x H(div) N H(curl) equivalent FOSLS
functional. The extra constraint is motivated &y= eVu, which impliesV x §/e = 0 (c.f., [47], Theorem 2.9).
However, for our case, we cannot take the curdjpd. This follows from our definition off = eVu + (€ — em)VUc;
the curl ofg/e is undefined at the interface. Hence we do not add the curltethe formulation.

Traditionally, developing anfiective error estimator for use in local adaptive refinemsighiallenging. Error
estimators based on the Galerkin method are not immediatalious from the problem formulation and local
error bounds for the PBE can be complicated to derive [3].0mti@ast, the FOSLS framework directly provides a
natural error indicator through the functional. The localue of FOSLS functional is aa posteriorilower error
bound, and, under some restrictions on mesh refinementoivedocan be shown to be a sharp theoretical error
estimate [48]. We exploit this fact and build an adaptivengfient scheme based on the value of the FOSLS
functional.

Let G,(q, u; uc) be the value of the FOSLS functional (15) restricted to eeta. Note that ifS is the set of
elements comprising the mesh, then

G(, U Ue) = ), Ge(d, U Uo).

7eS

Let i, = VG.(, U; Ue) andumayx = maXpT We mark simplex for refinement ifu, > yumaxWherey € (0, 1).

Our strategy is relatively stralghtforward yet more adh@shmarking strategies based on the “solvation free-
energy” [49] and FOSLS [48, 50] functionals have been predaa the literature. However, in our numerical
experiments, we did not find a significantférence in performance when the marking strategy is varied fo
our problem. When compared on the same mesh, FOSLS requiresmemory and CPU time than the standard
second-order Galerkin method. However, the meshes prodwcthe corresponding adaptive refinement schemes
are diferent, and the FOSLS approach is often able to achieve a ncotgade solution with less refinement.
As a result, the FOSLS approach is often mofigceent than a standard second-order Galerkin method. The
effectiveness of our scheme is highlighted in Section 4.

4. Numerical Experiments

We use a tetrahedral mesh @fwith globally continuous piecewise linear finite functiofisl elements) and
implement our finite element method and mesh refinement inkFER]. The meshes are generated using the
Geometry-preserving Adaptive Mesher (GAMer), which isigeed to produce simplicial meshes of molecular
volumes and interfaces [51]. As a result, the solvent dorhais a spherical outer boundary and the mesh is
conforming at the interface of the solvent and moleculeaesgi For the first four numerical experiments, we
chooseq,, = 1, &g = 78, andks = 0.918168, which corresponds to a typical ionic strength @M In these
experiments, we solve for the regularized potential anahngfly impose boundary conditions. The experiments
are performed on the Born ion, Fasciculin 1, methanol, arichals dipole. Letq" andu” be our finite-element
solution, andg andu the true solution. We verify convergence to the solution bynitoring the square-root
of FOSLS functionalG(q", u™; uc)%, since the FOSLS functional measures the error in the noduded byG:
G(g", u™ ug)? = G(q"-q, u"—u; 0)z. Therefore convergence of the FOSLS functional to zeroi@sglonvergence
of our finite element solution to the true solution. We useami octal refinement and adaptive refinement to
test the &ectiveness of your method, with adaptive refinement beimgezhout by longest edge bisection. Since
G(,. 0)% is equivalent taH(div) x H* norm, a standard finite-element error estimate impliesgitconvergence
rate to beO(h) using uniform refinement with piecewise linear basis fioret [37]. This optimal estimate assumes
the problem to b&i? regular. The convergence rate degrades as the solutiomesdess smooth. We examine this
scenario (dipole), and show that we still recover optimaiva@gence using adaptive refinement. In the following
results, we refer t&(q", u"; uc)% as the FOSLS norm and plot convergence rates normalizecedgrtipest value.

Finally, to validate the solutions generated by our implatagon, we compute the solvation free energy of
transcription factor PML (PDB code 1BOR). We compare the poted value with values found in the literature.
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Born lon

Due to the complex geometries associated with moleculee e few analytical solutions to the PBE or
linearized PBE; however, it is possible to find an expresfiothe potential of a spherical ion in a solvent [52].
This system is referred to as the Born ion after its author Barn [53]. The domain is consists of a spherical
solute of radiufRk with a single point charg®; at its center. The solute is surrounded by an unboundedrsiplve
Qs, as depicted in Figure 2a.

Writing the linear regularized PBE in spherical coordirsageelds

1d

‘r—za( (r)rzgu(r)) FROUD = -ROul),  r#R

d d
[[e(r)au(r)]]r = (en- ) (), T=R
U(c0) =0
wherew = ks/ y/és. Following [52], we obtain the analytic solution

B Ciexp[w(r = R)] /r = Cy/r, R<,
0=\ c-car 0<r<R

where
e 1 eQ1 1

“ T AroRe M G o

Ci

Figure 3a displays the convergence of the reaction potantrathe L?> norm, where the normalizelc error
is plotted as a function dfl, the number of points in the mesh. In three-dimensions, veeie a convergence
rate of nearlyO(h?) for uniform refinement, which corresponds @N-%/3). On the other hand, for adaptive
refinement, we observe a slightly better convergence raturé 3b displays the FOSLS functional residual as
the mesh is refined. In three-dimensions, a convergencefad¢h) corresponds t@(N-Y3). We see that the
FOSLS functional decreases nearly lineahiuring refinement, we ensure that new points on the s(sloleent
interface lie on the analytically determined sphericalrbary of the interface. As an example of convergence, in
Figure 2b we display a slice of the true solution, a numescéition on the initial mesh, and numerical solutions
after two successive steps of uniform mesh refinement.

Fasciculin 1

The Born ion is a useful test case as the analytical solus&mown; however, it is not a realistic simulation.
To study the fectiveness of the FOSLS formulation on a realistic protei&,compute the regularized potential
of Fasciculin 1 (1FAS in the Protein Data Bank) in an impl&itvent. 1FAS is a neurotoxin found in green
mamba venom [54]. The dynamics and electrostatics of theidtds 2 variant of this protein in its role as
an acetylcholinesterase inhibitor have been studied ih 68 [56], where the electrostatics are argued to be
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important to its function. In our experiments we use the dpton of the molecule specified in the PDB file
from the Protein Data Bank and strifff vater molecules using VMD [57]. The molecule region is natf@etly
spherical, and we do not expect the solution to be symmednigeadid in the case of Born ion. It is assumed that
the initial mesh defines the solute and solvent regions ddhikasolutgsolvent interface in this case is polygonal
and defined by the initial mesh. Consequently, refinemens @dihts to the polygonal interface. While the
analytical solution for Fasciculin 1 is not known, we areeatnl monitor the convergence of FOSLS functional.

Figure 4 shows the normalized convergence rate of FOSLSianat. Both uniform and adaptive refinement
perform well: the convergence rate is better tii{h) for both cases. Figure 5 depicts adaptive refinement around
the Fasciculin molecule. The adaptive scheme refines agjgefsaround the areas where the solution is changing
sharply.

10

_— Ljniform Refinement
++O(h) Convergence
- - -Adaptive Refinement

Normalized FOSLS Norm

: ‘ N
\ 10° 10* 10° 10°
Number of Vertices

(a) Molecular Model (b) Convergence

Figure 6: Methanol

(a) Initial Mesh
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Figure 7: Adaptive refinement around the solstdvent interface of methanol

Methanol

We examine our method in the more challenging setting of éharail molecule, obtained from the APBS
software package [11]. The model consists of three changleerss representing charge groups:s@Hd H with
positive charges of 0.27 and 0.43 respectively, and an O afitima negative charge of 0.7. The net charge on the
molecule is zero. Figure 6a displays the methanol molecule.
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We assume again that the initial mesh properly defines theesahd solvent regions. Figure 6b displays the
FOSLS functional as a function of the number of vertices aritesh. We see from the plot that the FOSLS func-
tional does decrease, but the convergence is slightlytesgl(h). On the other hand, adaptive refinementis ideal
for this problem since the solution varies sharply acrossititerface, indicating areas where local refinement is
useful. As Figure 6b shows, adaptive refinement yields 8lidietter tharO(h) convergence. The performance of
adaptive refinement is shown in Figures 7 and 8, where thdaeged electrostatic potential around the interface
is displayed. Figure 7 shows the initial mesh and an addptiedined mesh. Figure 8 displays a slice of the
regularized solution, which highlights the areas in whieé $olution changes rapidly and also that the solution is
not symmetric.

Figure 8: Methanol: Solution around the interface

Figure 9: Domain for a simple dipole.

Dipole

In this section we illustrate the performance of our schemea gimple dipole, as depicted in Figure 9. The
linearized PBE for ions inside a spherical molecular redias been studied in [58]. For our experiment the
domain consists of a spherical molecular region of radiusigsuwith two equal, but opposite unit charggs,
andq-, inside. The charges are placed on opposite sides of thésx@ach at distance from the origin (see
Figure 9). Asd is increased, the charges move closer to the interface ollnéan becomes less well-behaved,
developing a sharp gradient at the interface. Uniform refielst does notféciently resolve the solution in this
scenario. However, adaptive refinement is able to refindlijoaeound the simplices at the interface, and gives
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a significantly better convergence rate than uniform refimeinas shown in Figure 10. In particular, the rate of
convergence for adaptive refinement is nearly insensitivahanges in the parametr

1BOR

Finally, we compute the electrostatic solvation free eparftranscription factor PML (PDB code 1BOR),
and compare our value with the results in [59], where theyoske,, = 1, s = 80. The electrostatic free energy
of solvation is defined by [59]

2Gsoi= 3 ). Qi#X) ~ dromd ). (38)
=1

where ¢nomo iS the solution of equation 2a in homogenous enironmentstisa, = s = 1. In terms of the
regularized potential, the solvation free energy can be computed as,

1keT &

AGggl = > E ; Qju(x;j) (39)
On a mesh with 131086 vertices, we compute the free energyldtson equal to -792.577 kgahol, which

compares well with the value of -853.7 kaabl computed from the MIBPB-III method in [59]. The free eger

of solvation is sensitive to the geometry of the protein acef We use GAMer to define this interface geometry,
and hence our result does not exactly match up with [59], wdeoMSMS [60] to generate their protein surface.

5. Conclusion

The interface jump condition in (11) presents a challengeesign a single-domain FOSLS approach. We
overcome this diiculty with a choice of a vector parametgthat results in a consistent and well-posed first-order
system. The approach is also useful for solving the noralieguation using a Newton-FOSLS method [61], as
each step of Newton’s method wiltfectively involve solution of a linearized Poisson-Boltamaequation. In
this paper we show that the resulting FOSLS functional defineorm equivalent to the norm &t x H(div), yet
can be used in an existing finite element framework that uses standard piecewise continuous elementslin

We ofer numerical evidence in support of this approach and testrtbthodology on several problems. We
observe that adaptive refinement based on the FOSLS fuattcheme yields a faster convergence rate than
uniform refinement, and that thisfect is more pronounced for solutions that are more sharplying.

13


http://dx.doi.org/10.1002/jcc.21446

References

[1] N. A. Baker, D. Bashford, D. A. Case, Implicit solvent efiestatics in biomolecular simulation, in: B. Leimkuhl&. Chipot, R. Elber,
A. Laaksonen, A. Mark, T. Schlick, C. Schutte, R. Skeel (Edsew Algorithms for Macromolecular Simulation, Vol. 49 bécture
Notes in Computational Science and Engineering, Sprigedag, 2006, pp. 263—-295.

[2] D.Bashford, D. A. Case, Generalized Born models of maxiecular solvation féects, Annu. Rev. Phys. Chem. 51 (1) (2000) 129-152.

[3] L. Chen, M. J. Holst, J. Xu, The finite element approxiroatiof the nonlinear Poisson-Boltzmann equation, SIAM J. BurAnal.
45 (6) (2007) 2298-2320.

[4] F. Fogolari, P. Zuccato, G. Esposito, P. Viglino, Biomallar electrostatics with the linearized Poisson-Bodtmmequation., Biophys.
J. 76 (1) (1999) 1-16.

[5] F. Fogolari, A. Brigo, H. Molinari, The Poisson-Boltzma equation for biomolecular electrostatics: A tool foustural biology, J.
Mol. Recognit. 15 (6) (2002) 377-392.

[23] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic imtdon of a solute with a continuum. A direct utilization oBAnitio molecular
potentials for the prevision of solvenffects, Chem. Phys. 55 (1) (1981) 117-129.

[24] R. Zauhar, R. Morgan, A new method for computing the roamlecular electric potential, J. Mol. Biol. 186 (4) (1988)5-820.

[25] A. A.Rashin, Hydration phenomena, classical eletatiss, and the boundary element method, J. Chem. Phys) @49®0) 1725-1733.

[26] B. J. Yoon, A. M. Lenhd, A boundary element method for molecular electrostatich wiectrolyte &ects, J. Comput. Chem. 11 (9)
(1990) 1080-1086.

[27] A.H.Jufer, E. F. Botta, B. A. van Keulen, A. van der Ploeg, H. J. Besend The electric potential of a macromolecule in a solvant:
fundamental approach, J. Comput. Phys. 97 (1) (1991) 144-17

[28] Y. N. Vorobjev, J. A. Grant, H. A. Scheraga, A combinegritive and boundary-element approach for solution of trdimear Poisson-
Boltzmann equation, J. Amer. Chem. Soc. 114 (9) (1992) 33896.

[29] H.-X.Zhou, Boundary element solution of macromolecglectrostatics: Interaction energy between two preteiiophys. J. 65 (1993)
955-963.

[30] R.Bharadwaj, A. Windemuth, S. Sridharan, B. Honig, Acltlls, The fast multipole boundary element method foreaalar electro-
statics: An optimal approach for large systems, J. Compluent 16 (7) (1995) 898-913.

[31] Y. N. Vorobjev, H. A. Scheraga, A fast adaptive mult@ybboundary element method for macromolecular electrastatmputations in a
solvent, J. Comput. Chem. 18 (4) (1997) 569-583.

[32] J. Liang, S. Subramaniam, Computation of moleculactedstatics with boundary element methods, Biophys. J47%1997) 1830-
1841.

[33] A. H. Boschitsch, M. O. Fenley, H.-X. Zhou, Fast bourydelement method for the linear Poisson-Boltzmann equafioRhys. Chem.
B 106 (10) (2002) 2741-2754.

[34] B. Lu, D. Zhang, J. A. McCammon, Computation of eledatis forces between solvated molecules determined by tissén-
Boltzmann equation using a boundary element method, J. Chbys. 122 (21) (2005) 214102.

[35] S. S. Kuo, M. D. Altman, J. P. Bardhan, B. Tidor, J. K. WhiFast methods for simulation of biomolecule electrossatin: ICCAD
'02: Proceedings of the 2002 IEFEACM international conference on Computer-aided designvid@ress, New York, NY, USA, 2002,
pp. 466-473.

§ [6] 1. Klapper, R. Hagstrom, R. Fine, K. Sharp, B. Honig, Fsiog of electric fields in the active site of Cu-Zn superoxdimutase: Eects
8 of ionic strength and amino-acid modification, Proteinsu&t Funct. Gent. 1 (1) (1986) 47-59.

0 [7] J. Warwicker, H. C. Watson, Calculation of the electrintgntial in the active site cleft due to alpha-helix dipolésMol. Biol. 157 (4)
S (1982) 671-679.

2 [8] M. K. Gilson, K. A. Sharp, B. H. Honig, Calculating the etestatic potential of molecules in solution: Method aneeassessment,
© J. Comput. Chem. 9 (1987) 327-335.

= [9] M. E. Davis, J. A. McCammon, Solving the finiteffiirence linearized Poisson-Boltzmann equation: A compari$ relaxation and
- conjugate gradient methods, J. Comput. Chem. 10 (1989)3386—

g [10] M. J. Holst, F. Saied, Numerical solution of the nonén€oisson-Boltzmann equation: Developing more robusteiiment methods,
S J. Comput. Chem. 16 (1995) 337-364.

- [11] N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCampielectrostatics of nanosystems: Application to micrateb and the
E ribosome, Proc. Natl. Acad. Sci. USA 98 (2001) 10037-10041.

g [12] B. A. Luty, M. E. Davis, J. A. McCammon, Solving the finitéfference non-linear Poisson-Boltzmann equation, J. ConGhem.
S 13 (9) (1992) 1114-1118.

-~ [13] D. Bashford, An object-oriented programming suite détgctrostatic ffects in biological molecules An experience report on the NDEA
g project, in: Scientific Computing in Object-Oriented PllaEnvironments, Vol. 1343 of Lecture Notes in ComputereBce, 1997, pp.
2 233-240.

o [14] W. Rocchia, E. Alexov, B. Honig, Extending the applidip of the nonlinear Poisson-Boltzmann equation: Mukiplielectric constants
Z. and multivalent ions, J. Phys. Chem. B 105 (28) (2001) 658746

A [15] Y. C. Zhou, G. W. Wei, On the fictitious-domain and intelgtion formulations of the matched interface and bounditB) method, J.
E Comput. Phys. 219 (1) (2006) 228-246.

° [16] W. H. Orttung, Direct solution of the Poisson equationtfiomolecules of arbitrary shape, polarizability depsiind charge distribution,
1 Ann. N.Y. Acad. Sci. 303 (1977) 22-37.

[17] C. M. Cortis, R. A. Friesner, Numerical solution of thei®son-Boltzmann equation using tetrahedral finite-elegmeeshes, J. Comput.
o Chem. 18 (1997) 1591-1608.

5 [18] M. J. Holst, N. A. Baker, F. Wang, Adaptive multilevel ifima element solution of the Poisson-Boltzmann equationlgoAthms and
< examples, J. Comput. Chem. 21 (2000) 1319-1342.

5 [19] N. A. Baker, M. J. Holst, F. Wang, Adaptive multilevel itim element solution of the Poisson-Boltzmann equatioriRéfinement at
f b= solvent accessible surfaces in biomolecular systems,dpGb Chem. 21 (2000) 1343-1352.

i B [20] A. . Shestakov, J. L. Milovich, A. Noy, Solution of thenlinear Poisson-Boltzmann equation using pseudo-gahsontinuation and
=3 the finite element method, J. Colloid Interface Sci. 247 RD0R) 62—79.

. [21] D. Xie, S. Zhou, A new minimization protocol for solvingpnlinear Poisson-Boltzmann mortar finite element equnaT Numerical
52 Mathematics 47 (4) (2007) 853-871.

D? k= [22] C. Wenbin, S. Yifan, X. Qing, A mortar finite element apgpimation for the linear Poisson-Boltzmann equation, Apfiaith. Comput.
a g 164 (1) (2005) 11-23.

which has t

This is the pre-peer reviewed version of the follo

14


http://dx.doi.org/10.1002/jcc.21446

(36]
(37]
(38]

(39]

(40]
[41]
[42]
[43]
(44]

(45]

31, 1625-1635 (2010),

[46]

Chem.

[47]
(48]

(49]

J. Comput.

(50]
(51]
[52]
(53]
(54]
(55]
[56]
[57]
(58]

[59]
(60]

J.H. Chaudhry, E.C. Cyr and L.N. Olson,

published in final form at

(61]

>: S.D. Bond,

n
<
Q
=3

This is the pre-peer reviewed version of the follo

B. Lu, X. Cheng, J. Huang, J. A. McCammon, Ordiealgorithm for computation of electrostatic interactionsbiomolecular systems,
Proc. Natl. Acad. Sci. USA 103 (51) (2006) 19314-19319.

Z. Cai, R. Lazarov, T. A. Mantdtel, S. F. McCormick, First-order system least squares foosé-order partial dierential equations. |,
SIAM J. Numer. Anal. 31 (6) (1994) 1785-1799.

Z. Cai, T. A. Mantetiel, S. F. McCormick, First-order system least squares foosé-order partial dierential equations. I, SIAM J.
Numer. Anal. 34 (2) (1997) 425-454.

T. A. Manteutel, S. F. McCormick, G. Starke, First-order system leastasgs for second order elliptic problems with discontirgiou
codficients, in: N. D. Melson, T. A. Mantéfel, S. F. McCormick, C. C. Douglas (Eds.), Seventh Copper ima Conference on
Multigrid Methods, Vol. CP 3339, NASA, Hampton, VA, 1996,./§85-550.

M. Berndt, T. A. Manteffel, S. F. McCormick, G. Starke, Analysis of first-order systleast squares (FOSLS) for elliptic problems
with discontinuous cdécients. I, SIAM J. Numer. Anal. 43 (1) (2005) 386—408.

M. Berndt, T. A. Mantetfel, S. F. McCormick, Analysis of first-order system leasta®gs (FOSLS) for elliptic problems with discon-
tinuous coéicients. I, SIAM J. Numer. Anal. 43 (1) (2005) 409-436.

M. Holst, Adaptive numerical treatment of elliptic $gms on manifolds, Adv. Comput. Math. 15 (1-4) (2001) 139-19

P. B. Bochev, M. D. Gunzburger, Finite element methddeast-squares type, SIAM Rev. 40 (4) (1998) 789-837.

F. Brezzi, M. Fortin, Mixed and hybrid finite element rhetls, Vol. 15 of Springer Series in Computational MatheeosatSpringer-
Verlag, New York, 1991.

Y. Song, Y. Zhang, T. Shen, C. L. Bajaj, J. A. McCammon,A\.Baker, Finite element solution of the steady-state Sclwwski
equation for rate constant calculations, Biophys. J. 8§2@p1) 2017—-2029.

Y. Cao, M. D. Gunzburger, Least-squares finite elemept@ximations to solutions of interface problems, SIAM dinher. Anal. 35 (1)
(1998) 393-405.

V. Girault, P.-A. Raviart, Finite element methods foawWer-Stokes equations, Vol. 5 of Springer Series in Comjprtal Mathematics,
Springer-Verlag, Berlin, 1986.

M. Berndt, T. A. Manteffel, S. F. McCormick, Local error estimates and adaptive egfient for first-order system least squares
(FOSLS), Electron. Trans. Numer. Anal. 6 (1997) 35-43.

E. C. Cyr, Numerical methods for computing the freerggef coarse-grained molecular systems, Phd, Univerditlimois at Urbana-
Champaign (2008).

Z. Cai, C. Westphal, An adaptive mixed least-squardagefilement method for viscoelastic fluids of Oldroyd typelNdn-Newtonian
Fluid Mech. 159 (1-3) (2009) 72-80.

Z.Yu, M. Holst, Y. Cheng, J. A. McCammon, Feature-presey adaptive mesh generation for molecular shape maoglali simulation,
J. Mol. Graph. Model. 26 (8) (2008) 1370 — 1380.

M. J. Holst, Multilevel methods for the Poisson-Boltanm equation, Phd, University of lllinois at Urbana-Chaigpg1994).

M. Born, Volumen und hydratationswarme der ionen t&airift fir Physik 1 (1920) 45-48.

M. H. le Du, P. Marchot, P. E. Bougis, J. C. Fontecillan@es, 1.9-A resolution structure of fasciculin 1, an anttgicholinesterase
toxin from green mamba snake venom, J. Biol. Chem. 267 (392)122122-22130.

Z. Radig, P. D. Kirchhfi, D. M. Quinn, J. A. McCammon, P. Taylor, Electrostatic inflae on the kinetics of ligand binding to acetyl-
cholinesterase: Distinctions between active center igand fasciculin, J. Biol. Chem. 272 (37) (1997) 23265-2327

N. A. Baker, V. Helms, J. A. McCammon, Dynamical projestof fasciculin-2, Proteins: Struct. Funct. Genet. 36({19P9) 447-453.
W. Humphrey, A. Dalke, K. Schulten, VMD — Visual MoleeulDynamics, J. Molec. Graphics 14 (1996) 33-38.

J. G. Kirkwood, Theory of solutions of molecules contag widely separated charges with special applicationattterions, J. Chem.
Phys. 2 (7) (1934) 351-361.

W. Geng, S. Yu, G. Wei, Treatment of charge singulasifieimplicit solvent models, J. Chem. Phys. 127 (11) (200#1D6.

M. F. Sanner, A. J. Olson, J.-C. Spehner, Fast and raimmputation of molecular surfaces, in: SCG '95: Proceesliigthe eleventh
annual symposium on Computational geometry, ACM, 1995406-407.

A. L. Codd, T. A. Mantetfel, S. F. McCormick, Multilevel first-order system least aggs for nonlinear elliptic partial fferential
equations, SIAM J. Numer. Anal. 41 (6) (2003) 2197-2209.

15


http://dx.doi.org/10.1002/jcc.21446

